

BACHELOR THESIS

On Recognizing Design Patterns with
Crocopat

Arend v. Reinersdorff

University of Freiburg
Department of Computer Science

Chair of Software Engineering

Reviewers:
Prof. Andreas Podelski
Prof. Peter Thiemann

February 9, 2009

 2

Declaration

I hereby declare, that I am the sole author and composer of my Thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed
references of said work.
I hereby also declare, that my Thesis has not been prepared for another examination
or assignment, either wholly or excerpts thereof.

Freiburg, February 9th 2009 __________________________________
 place, date Signature

 3

Acknowledgements
I am very grateful to Martin Schäf from the Chair of Software Engineering for his patience
and good advice.
And I want to thank my wife Denisa for her support and encouragement.

 4

Table of Contents

Abstract...5

Zusammenfassung auf Deutsch..6

Motivation...7
Definition and Uses of Design Patterns...7
Advantages of Design Patterns ...7
Finding Design Patterns in Existing Code ...7

Crocopat ...9

Parsing Java Code ..11
Eclipse JDT Core..11
Eclipse JDT Internal ...11
Spoon ...12
Uni Freiburg Internal Tool..12
Sun’s Java Compiler API..12
JML Parser ...12
Conclusion ...13

Crocopat Input Format ..14
Obvious Relations ..14
Additional Relations ...15
Notable Omissions..15
Naming Conventions ..16
The System.out problem ...16

Finding Design Patterns ...18

The Decorator Pattern ...19
Finding the Decorator Pattern with Crocopat ..20

The Builder Pattern..21
Finding the Builder Pattern with Crocopat ..22
Possible Improvements ...22

Immutable Classes..23
Finding Immutable Classes with Crocopat ..23
Possible Improvements ...24

Conclusion ..25
A 90% solution...25
The RSF output format ...26
Crocopat ...27
Future Work ...27

Appendix A: Output Format of java2rsf ...28

Appendix B: User Guide for java2rsf ..30

Appendix C: Creating the example RSF output..31

References ...32

 5

Abstract
The program Crocopat was created - among other things - to find design patterns. But it has
its own input format and cannot read Java source code directly. So it is hard to determine how
good the program really is in finding design patterns.
The goal of this paper is to create a tool, which converts Java projects into Crocopat’s input
format. Then different design patterns shall be tested to evaluate how well searching for
design patterns with Crocopat really works.

 6

Zusammenfassung auf Deutsch
Das Programm Crocopat von Dirk Beyer soll unter anderem Design Patterns erkennen. Das
Programm arbeitet mit einem eigenen Eingabeformat und lässt sich daher nicht direkt auf
Quellcode anwenden. Daher ist es schwer abzuschätzen, wie gut das Programm beim Suchen
nach Design Patterns tatsächlich ist. Im Rahmen dieser These wurde daher ein Programm
geschrieben (java2rsf), das Java Quelltext in das Eingabeformat von Crocopat umwandelt.

Das Durchsuchen eines Projekts nach Design Patterns kann Programmierern helfen, die
Struktur des Projektes zu verstehen. Insbesondere, wenn das Projekt sehr umfangreich und
nicht ausreichend dokumentiert ist. Außerdem kann man anhand von Anzahl und Art der
gefundenen Design Patterns Aussagen über die Qualität des Quelltextes machen.

Es wurden vier Java Projekte nach Design Patterns durchsucht. Dabei zeigte sich, dass
Crocopat für diese Aufgabe sehr gut geeignet ist. Eine große Anzahl von Design Patterns
konnte gefunden werden. Und durch die Weiterentwicklung von java2rsf und den Crocopat-
Suchalgorithmen könnte sich die Anzahl der gefundenen Design Patterns noch erhöhen.

Allerdings wird es nie möglich sein, sämtliche Design Patterns in sämtlichen Java Projekten
zu finden, dafür sind die meisten Design Patterns zu variabel definiert. Durch kontinuierliche
Verbesserung der Suche sollte es allerdings möglich sein, sich einer 90%igen Lösung
anzunähren. Also einem Verfahren, das in 90% aller Java Projekte 90% aller Design Patterns
finden kann.

 7

Motivation

Definition and Uses of Design Patterns
A design pattern is a solution to an often-occurring problem in software design. A design
pattern gives a description of the design problem and lays out how to implement a solution.
The layout of the solution describes the classes needed to solve the design problem and the
relationship between these classes.

A design pattern also has a name. It is important that the name of the pattern is well known
and well defined. This makes it possible to find information about the pattern and to discuss it
among programmers. The design patterns and their names defined by Gamma et al. in
“Design Patterns : Elements of Reusable Object-Oriented Software” [Patterns] can be
considered the standard body of patterns.

Design patterns work at a certain level of abstraction. A particular algorithm to solve a
computational problem, for example the Euclidian algorithm to find the greatest common
divisor, is not a design pattern. Instead, a design pattern describes the design of classes and
the communication between them.

A design pattern describes the general solution to a general problem. For a specific program
this solution has to be implemented in the context of program. While the idea of the design
pattern is reused, the code is not. So a software library is not a design pattern.

Advantages of Design Patterns
If a design pattern is applicable to a problem, it should be used instead of a new solution
created from scratch.
Firstly, it makes the solving of the underlying design problem easier. It removes the need to
create a new solution from the ground up and leaves only the implementation to be done.
Secondly, a design pattern is likely to be of much better quality than a solution created from
scratch. The standard design patterns have been used in thousands of programs. They have
been reviewed by experts and their strengths and weakness are well known.
Additionally, a design pattern is easier to document. A new programmer only needs to know
what design pattern was used and how it was implemented. There’s no need to explain the
solution to the design problem in detail. If the new programmer doesn’t know the design
pattern he can look it up easily.

Finding Design Patterns in Existing Code
Most work on design patterns is about using design patterns when writing software, most
notably “Design Patterns” by Gamma and others, and for Java “Head First Design Patterns”
by Freeman. But finding design patterns in existing source code is also very useful.

A very common task in software engineering is program comprehension. This is needed
when a programmer has to start work on an existing software project that he is not familiar
with. In order to work on the software project effectively, he must first understand its design.
This is especially difficult for big projects with hundreds of classes. But even for relatively
small software projects, experience has shown that it is much harder to read (and understand)
code than to write it. [Spol]

 8

Searching an existing software project for design pattern can help program comprehension by
finding structures in the code and making the design of the software project more transparent.
A mapping of design patterns can give an overview over the design of a software project and
provide a basis for understanding it in detail. [Bey]

The relatively new research area of architecture recovery is the academic continuation of
program comprehension. In “A Framework for Software Architecture Recovery” Wolfgang
Eixelsberger and others defined it as “a process of identifying and extracting higher level
abstractions from existing software systems”. Architecture recovery deals mainly with big
legacy software. Here the understanding of the software can often be even more difficult
because the original authors of the software are not available anymore.

Finding design patterns in existing software also helps in case of bad or incomplete
documentation. Under ideal circumstances, software should have sufficient documentation
for both the user and future maintainers of the software. In practise this is rarely the case. Due
to time pressure, lack of resources or dislike of the programmers for writing it, software
documentation is often insufficient or missing completely.
Extreme Programming and other lightweight programming methodologies often encourage
programmers to keep documentation to a bare minimum. [Svet]
If good documentation exists, it usually explains how to use the software and not how it was
designed. For example Java has built-in support for Javadoc documentation. But while
Javadoc makes it easy to document single classes and methods, it doesn’t encourage
documentation of the overall software design. This results in most Java software having at
least basic documentation for classes and methods, but no documentation for the design.
Even when good software documentation exists, it might be outdated if it hasn’t been updated
after the latest changes in the code. Searching the code for design patterns on the other hand
can be done automatically and does not require manual updating by the programmer.
Notable work in this area includes Guo et al. “A Software Architecture Recovery Method”
[Guo] which describes a semi-automatic process to recover the software architecture of a
project with an emphasis on checking if the architecture conforms to the documentation. In
“Linux as a Case Study: Its Extracted Software Architecture” [Bowm] Bowman and others
use automated tools and manual input to recover the actual architecture of the Linux kernel
and compare it to its expected architecture.

Searching a software project for design patterns can also be used to assess the quality of the
code. [Bey] On the most basic level the number of patterns found is an indicator for how well
the code is structured. If very few patterns can be found in a large software project, the project
is likely to be badly structured, hard to understand and hard to work with.
A more sophisticated approach would be to check if the patterns found are appropriate for the
project. And if the patterns found coincide with the design specified in the documentation.
Last but not least the code can be searched for anti-patterns, which are software designs
known to cause problems.

 9

Crocopat
Crocopat [Croc] was written in 2003 by Dirk Beyer, who is now assistant professor of
computing science at Simon Fraser University in Vancouver, Canada. It is freely available
under the LGPL. Crocopat was created to analyse graph models of software projects and find
patterns in these graphs. Crocopat can not only analyse and manipulate graphs but also
relations of arbitrary arity. Searching for design patterns is one of the goals of Crocopat.

Internally Crocopat uses binary decision diagrams (BDD) to represent relations. This allows
Crocopat to be fast in the use of time and efficient in the use of memory. In a comparison
between Crocopat and other pattern recognition tools for C++, Crocopat came out ahead both
in speed and the number of patterns found. [Fulo]

For both input and output Crocopat uses files in the Rigi Standard Format (RSF). RSF is a
very simple text format that allows one tupel per line.
For example:

CLASS Class1
CLASS Class2
METHOD method1
METHOD method2
HAS Class1 method1
HAS Class2 method2
CALLS Class1 method1 Class2 method2

is an RSF file indicating that two classes, Class1 and Class2, and two methods, method1 and
method2, exist, that method1 is part of Class1, that method2 is part of Class2 and that
method1 in Class1 calls method2 in Class2.
The simplicity of RSF is a great advantage. It means that it is very easy to create input for
Crocopat with other tools and to process Crocopat output from other tools.

To manipulate relations, Crocopat uses programs written in the Relation Manipulation
Language (RML). RML is based on predicate calculus and features among other things forall
(), exists () and transitive closure operators.
In addition to operations on relations, RML also has elements of imperative programming
such as WHILE, IF and FOR statements. There are also expressions for numeric calculations
and regular expressions for dealing with strings.

For example:

Rec(c, m) := CALLS(c, m, c, m);
PRINT ["RECURSIVE_METHOD"] Rec(c, m);

is a program that searches for and outputs (directly) recursive methods. This program works
with input as in the above RSF example.

For more information about RML see the Crocopat manual. [CrocM]

Crocopat works with relations and Java is an imperative programming language. This
difference means that many parts of Java programs cannot be analysed conveniently by
Crocopat. In particular Crocopat would be a very bad fit for analysing the code in Java
methods. Statements in methods must be executed in order and to preserve the order of
statements in the relational RSF input would be very difficult and verbose.

 10

Fortunately, design patterns deal for the most part with the high-level design of classes and
their relationships, not the concrete code in methods. And for this level of abstraction
Crocopat is a perfect fit. A class having fields of a certain type or a method calling another
method are relationships that are very easy to express with relations.

There are other tools that were created to find design patterns. Dietrich and Elgar created the
“Web of Pattern Project”, an Eclipse plugin that searches Java source code for design
patterns. Their pattern definitions are written in the Web Ontology Language (OWL) as
described in their paper “A formal description of design patterns using OWL” [Diet].
In “Pattern-based Software Architecture Recovery” [Sart] Sartipi and Kontogiannis describe
and test a program that finds design patterns in existing code. Like Crocopat they use
relational graphs to represent the software components and their relations.

 11

Parsing Java Code
Crocopat cannot read Java code. Crocopat’s relational input format RSF is quite different
from normal Java source code.

To use Crocopat on Java projects, a tool is needed that parses Java source code and creates
Crocopat input format from it. More specifically, a tool is needed that creates an abstract
syntax tree for existing Java source files.

There are a variety of tools that can do this. Some of them are more suited to this task than
others. Common to all tools listed here is that they are freely available.

Eclipse JDT Core
JDT Core [JdtC] (package org.eclipse.jdt.core) is part of Eclipse, one of the most
popular Java development environments. JDT Core is the best choice for parsing Java code
and working with the resulting abstract syntax tree. Although for this paper JDT Internal was
used.

JDT Core handles the Java-specific features of the Eclipse platform, such as syntax
highlighting and as-you-type error reporting. As Eclipse is a very mature and widely used
development environment, JDT Core is very reliable.
Also, there is very good documentation available in the form of tutorials and well-commented
Javadocs. JDT Core is actively maintained, so any bugs can be expected to be fixed. And
there is an active forum for users of the API (application programming interface) where
questions are answered.

Its only drawback is that JDT Core can only be used as part of an Eclipse application. JDT
Core relies on other features of the Eclipse platform, for example file system management,
and does not work outside the context of the Eclipse runtime environment. So every program
that uses JDT Core must bear the overhead of a full Eclipse runtime environment. It is not
possible to use JDT Core as a library from normal Java code.
This is in principle not a problem for this paper, as Eclipse applications can be run as
command-line programs.
The reason JDT Internal was used for this paper instead of JDT Core was a broken Eclipse
installation on my computer that prevented me from creating working Eclipse applications.
And I only discovered the problem, when my JDT Internal based program was nearly
complete.

Eclipse JDT Internal
JDT Internal is also part of Eclipse (package org.eclipse.jdt.internal). But it is much
more difficult to use than JDT Core.

While JDT Internal is as reliable and actively maintained as JDT Core, there is no
documentation. Javadocs must be built from the sources and they are only sparsely
commented.
Its only upside is that JDT Internal is not dependent on the Eclipse runtime environment. It
can be used as a library from any Java code. Programs that use JDT Internal are for example
the Eclipse Batch Compiler [Bat], the Spoon project mentioned below and Google GWT
[Gwt], a Java-to-Javascript compiler.

 12

JDT Internal should be avoided in favour of JDT Core whenever possible. For this paper JDT
Internal was used only because of a faulty Eclipse installation.

Spoon
Spoon [Spoon] was written in 2007 at the Institut National de Recherche en Informatique et
en Automatique in France. It’s an open source program that creates an abstract syntax tree
from Java code and it is fairly easy to use.

Internally, Spoon uses JDT Internal but hides this from the user behind a very clean API for
accessing the abstract syntax tree. There is good documentation and even a forum for users of
Spoon.

Spoon is a relatively new program and suffers from various small bugs. For example, it
doesn’t fully support Inner Classes ([Jls] Chapter 8) in Java. Unfortunately, Spoon is no
longer actively maintained so these bugs will in all likelihood never be fixed.

With 5 more years of maintenance, Spoon could be a good, easy to use solution for parsing
Java code. At the moment, it sadly looks like a dead end.

Uni Freiburg Internal Tool
The chair of software engineering at the University Freiburg has developed an internal tool
that parses Java code for static analysis. [Stal]

This internal tool looks very promising so far. It is under active development and the
developers are available to me for direct support.

Unfortunately, it is in an early stage of development. There is no public release nor any
documentation and it has not been widely tested. So for the moment, it cannot be considered
sufficiently reliable.

Sun’s Java Compiler API
Starting with JDK 1.6, Sun’s Java compiler comes with an API to access the abstract syntax
tree of Java source files. [SunC]

The Java Compiler API is based on JSR-199 and is part of Sun’s Java compiler. This means it
is officially supported, standard based and eliminates the need for a third-party library.
The major disadvantage is that Sun’s Java Compiler API doesn’t resolve type bindings. For
example in the statement

File myFile = new File("test.txt");

File might be of type java.io.File or com.example.File, depending on the imports in
the source code. But Sun’s Java Compiler API cannot tell the difference. Also this is a fairly
new feature and besides the Javadocs there’s no documentation available.

JML Parser
The Java Modeling Language was developed to specify and check pre and post conditions in
Java. JML is a very mature project, but the latest stable build has not been updated for Java 5.

 13

The API for accessing the JML parser is part of a development build (JML3Core) [Jml] and
not nearly as reliable as JML itself. To date (February 2009) there are several dependencies
on a specific, outdated version of the Eclipse runtime. And as this is a development build,
there is no documentation available and it can only be downloaded as source code.

Conclusion
Of these Java parsers, Eclipse JDT Core is clearly the best choice, despite the fact that it
cannot be used as a simple library due to its need to run inside the Eclipse runtime.
Eclipse JDT Internal does not depend on the Eclipse runtime. But it is an obscure and little
used API that is very difficult to use.
Sun’s Java Compiler API is usable for small tasks, but is too limited for more sophisticated
needs.

 14

Crocopat Input Format
To search Java projects for design patterns, the Java source code must first be converted to
RSF. For this purpose I wrote as part of this thesis the java2rsf tool (on the attached CD).
Java2rsf parses Java source code and outputs RSF data. See Appendix B for a user guide to
java2rsf.

Because Java is an imperative programming language and Crocopat’s input format RSF is
relational, it is not possible to translate the whole meaning of Java source code to RSF.
Nevertheless, as much information as possible should be included in the RSF output. At the
moment not all information that can be extracted to RSF is used to search for design patterns.
But in the future that might change.
And should performance be an issue in Crocopat processing, it is very easy to filter unneeded
information from RSF files.

It is worth noting, that Crocopat includes various examples of RSF files. Among them is an
RSF file representing the Java API version 1.4.2. However, this example is very basic and
uses only three relations CALL, CONTAINMENT and INHERITANCE.

Obvious Relations
An obvious starting point is to create a relation for the existence of basic building blocks of
Java projects. So for each package, type, method and field a line is added to the RSF output
denoting its existence:
 PACKAGE packageName
 CLASS ClassName
 METHOD methodName
 FIELD fieldName

There are different relations for the different Java types, i.e. CLASS, INTERFACE, ENUM
and ANNOTATION_TYPE. There is also a separate relation CONSTRUCTOR for
constructors. For a complete reference of the java2rsf output format see Appendix A.

The basic building blocks of Java projects have a clear hierarchy. Packages can contain types,
which can contain methods and fields. This hierarchy is expressed in relations:
 CONTAINS packageName typeName
 CONTAINS typeName nestedTypeName
 HAS typeName fieldName

HAS typeName methodName

The last category of obvious relations are the attributes of basic building blocks of Java. Such
attributes are for example the (return-) type of fields and methods, modifiers (public, static,
etc.), annotations and superclasses:
 IS_OF_TYPE fieldOrMethodName typeName
 IS fieldOrMethodOrTypeName public
 IS fieldOrMethodOrTypeName static
 HAS_ANNOTATION methodOrTypeName annotationTypeName

 15

Additional Relations
Four additional relations are included in the RSF output, for method calls, reading and writing
of fields and general use of types:
 CALLS methodName1 methodName2
 READS methodName fieldName
 WRITES methodName fieldName
 USES methodOrTypeName typeName

Method calls and field access can only take place in a method body. But use of a type can take
place in a method body (variable type, parameter type, cast, etc.) as well as in a class body
(annotation, type of field, etc.). The use of primitive types (int, char, boolean, etc.) is not
included.
More information could probably be extracted, but these four relations have three advantages:

1. Ease of extraction. They are easy to extract from the abstract syntax tree.
2. Completeness. All instances of method calls, field accesses and type uses can be

extracted and one can be confident that none is missed. The exception to this
completeness is the use of reflection, which is not detected.

3. Relevance. These relations are very relevant to determining the relationship between
different classes of a Java project and as such to the search for design patterns.
For example, it would be easy to extract instances of nested loops from method
bodies. But nested loops are not related to design patterns.

Notable Omissions
As stated above, large parts of Java code cannot be converted to RSF. For the most part, the
omitted parts of the Java language are not very relevant to searching for design patterns or
would be very hard to extract. Two notable exceptions are method parameters and generics,
which are omitted at the moment but are likely to be included in a future version of java2rsf.

The main problem is that both method parameters and generics depend on the order of
parameters:

void method1(int x, float y);
void method2(float y, int x);
void method3(int x, float y, int z);
Map<String, Integer> map1;
Map<Integer, String> map2;

It is not enough to state that a method has an int and a float parameter. The order of the
parameters matters and so does the number of parameters of the same type. Similarly, it is not
enough to state that a Map has type parameters String and Integer. The order of the
parameters matters here as well. Describing order and multiple occurrences with relations is a
difficult and verbose task, so for this first version of java2rsf method parameters and generics
are not supported.

 16

Naming Conventions
For analysis Crocopat needs unique names for packages, types, fields and methods, the basic
building blocks of Java. The previously mentioned RSF example for the Java API version
1.4.2 that is included in Crocopat uses the short name of a type and attaches a number to it,
for example ASCII_61899 and Object_41710.
This ensures unique names, but they are hard to work with. For someone reading the RSF file
it is not obvious where to find the source file of ASCII_61899, or whether Object_41710
refers to a field, a method parameter or to java.lang.Object.

Fortunately, Java makes it easy to give its basic building blocks unique names that are easily
understood by someone reading the RSF file. For packages and types, their fully qualified
name is used. For fields, the fully qualified name of the enclosing class plus the field’s name
is used. For methods, the fully qualified name of the enclosing class plus the method’s name
plus the list of method parameter types is used:

PACKAGE java.awt
 CLASS java.awt.Dimension
 FIELD java.awt.Dimension#height
 METHOD java.awt.Dimension#setSize(java.awt.Dimension)
 METHOD java.awt.Dimension#setSize(double,double)

The System.out problem
Consider this simple “Hello World” program in Java:

class Hworld{

public void sayHello(){
System.out.println("Hello, World!");

}
}

Part of the output that java2rsf creates is:

CALLS Hworld#sayHello() java.io.PrintStream#println(java.lang.String)
READS Hworld#sayHello() java.lang.System#out

That the method reads java.lang.System#out is expected. Yet intuitively, one would expect
a call to java.lang.System.out#println(java.lang.String). The call to
java.io.PrintStream#println(java.lang.String) is counter-intuitive.

java2rsf only outputs the type of the object on which a method is called. Sometimes it is
known at compile-time that the object on which a method is called is a field in another object,
like out which is a static field in the class System. But often it is not known whether or not
an object on which a method is called is a field in another object or not. Consider this
modified “Hello World” program:

class Hworld{

public void sayHello(){
 PrintStream ps = System.out;

ps.println("Hello, World!");
}

}

 17

It is still possible to deduce that ps is in fact the same object as System.out, but it is a lot more
difficult. Finally, consider another modification:

class Hworld{

public void sayHello(PrintStream ps){
ps.println("Hello, World!");

}
}

Now it is impossible to determine at compile-time, if ps references an object that is a field in
another class or not. It depends on what value is used when calling sayHello. So noting down
calls to System.out#println could never catch all those calls. It might still be useful in
some cases to note only those calls that can be detected at compile time, but it would result in
partial and unreliable data and might mislead someone using the RSF output.

It is easy to overlook that the identity of a concrete object can in some cases be deducted at
compile-time, but in most cases it cannot. java2rsf’s output models many relations as
suggested in Andreas Haufler’s paper “Erkennung von Entwurfsmustern”. [Hauf] However he
too makes the mistake of proposing that method calls to this and super objects should be
noted. Consider:

class Hworld{

public void saySomething(Object o){
System.out.println("Something is: " + o.toString());

}
}

At compile-time it is not possible to determine if o is a reference to this or super.

 18

Finding Design Patterns
To test if this approach for finding design patterns is viable, it must be tested on real Java
projects. For this purpose, three open-source Java projects were selected:

 The Java API, as included version 1.6, update 10, of the JDK for Windows
 Eclipse JDT Core package, as included in version 3.4.1 for Windows [JdtC]
 jEdit 4.2, a text editor for programmers [Jedit]
 Java Mail 1.4.1, an email and messaging framework [Jmail]

For more information about how to create the RSF output for these projects, see Appendix C.

The number of design patterns found is as follows:

Project Size of source Size of RSF

output
Number of
decorator
patterns
found

Number of
builder
patterns
found

Number of
immutable
classes
found

Java library 69.8 MB 165 MB 405 580 51
JDT Core 14.8 MB 54.8 MB 80 20 2
jEedit 5.4 MB 14.3 MB 3 4 2
Java Mail 1.4 MB 2.8 MB 17 2 0

 19

The Decorator Pattern
The decorator pattern allows extending or modifying the behaviour of a class without
subclassing it.

Decorator Pattern Class Diagram

The decorator pattern consists of three classes:

 A base class Component that defines an API.
 A concrete implementation of the Component’s API, ConcreteComponent.
 And a Decorator class that extends the behaviour of Component objects.

To extend or modify the behaviour of a Component object, the decorator class must
implement the same API. But instead of inheriting or re-implementing this API, the decorator
class has a field wrappedComponent of type Component. The decorator now forwards
method calls to the Component API to the object in its wrappedComponent field.

An example of the decorator pattern can be found in the java.io package:

- java.io.InputStream is the base class, it defines the general behaviour of an input
stream

- java.io.FileInputStream and java.io.ByteArrayInputStream are concrete
implementations of input streams

- java.io.BufferedInputStream and java.io.PushbackInputStream are decorator classes.
They support the InputStream API and extend it with additional behaviour.

The decorators, BufferedInputStream and PushbackInputStream do not implement the
InputStream API themselves. Instead their constructors receive an InputStream object to
which method calls are forwarded.

For more details concerning the decorator pattern see [Patterns] page 175 and [Head page] 91.

 20

Finding the Decorator Pattern with Crocopat
Consider a pair of Java classes, BaseClass and DecoratorClass. For DecoratorClass to be a
decorator of BaseClass, two conditions must be met:

1. DecoratorClass must have a field which has a type that is a subtype of BaseClass
2. DecoratorClass must implement or inherit from BaseClass. Either directly or

indirectly.

It is possible to think of additional restrictions. For example that the methods of
DecoratorClass should call the methods of its BaseClass field. But the two fore mentioned
conditions work very well.
The RML program for the decorator pattern is short and easy to write. The decorator pattern
can be found easily and reliably because it is:

- Unique. The structure that the decorator pattern imposes on the Java classes is very
specific and not very common. If a class has a field of the type of a base class, and it
supports the same API as the base class, it is most likely a decorator.

- Reliable. The structure that the decorator pattern imposes on the Java classes is the
same for all decorators. There is very little room for variation or optional components.
The same structure can be expected in every decorator class.

- Easy to find with Crocopat. The structure that the decorator pattern imposes on the
Java classes is easy to find with Crocopat. The complete information about inheritance
and fields is part of the RSF output.

 21

The Builder Pattern
The builder pattern defines an API for the construction of a complex object.
This separates the construction of the complex object from its representation. In this way, the
complex object can be assembled step-by-step, as opposed to a single constructor call. With a
clearly defined creation API it is also possible to easily change the type of object that is
created. It is sufficient to use another concrete builder class that supports the abstract creation
API and the same method calls can generate an object of a different type.

Builder Pattern Class Diagram

The builder pattern consists of three classes. The Product is the result of the creation process.
It is a complex class that cannot easily be created in one step. Often the product is not a single
class but a composition of different classes.
The AbstractBuilder is an abstract class that defines an API for creating product objects. In
most cases the abstract builder defines methods for adding information about the product
object that should be produced. And it defines a build() method that returns a product object
after all necessary information has been added.
The ConcreteBuilder is a concrete class that implements the abstract builder API. There can
be more than one concrete builder class. For example an AbstractDocumentBuilder class
might have two implementations HtmlDocumentBuilder and RtfDocumentBuilder.

For more information about the builder pattern see [Patterns] page 97 and [Head] page 614.

Often a fourth class, the Director, is named as a part of the builder pattern. See for example
[Patterns] page 97. The director is then placed between the client and the builder API and the
client makes only a single call to the director. This approach has an advantage if the director
has all the information it needs to create a product, for example when the product is created
from a file. When the client has to provide the details on how the product is created, a director
does not make sense.

 22

Finding the Builder Pattern with Crocopat
Consider three Java classes AbstractBuilder, ConcreteBuilder and Product. For these three
classes to be considered a builder pattern the following conditions must be met:

1. ConcreteBuilder must implement or inherit from AbstractBuilder, either
directly or indirectly.

2. AbstractBuilder is an interface or an abstract class
3. AbstractBuilder defines a build method that has the return type Product.
4. The build method of ConcreteBuilder must create a new Product object.
5. AbstractBuilder must not be subtype of Product. That would break the

separation of Product from its creation.
6. ConcreteBuilder must have at least one field to store its state.
7. The build method is public and not static.

These conditions search for the very basic structure of a builder pattern: An abstract builder
defines a method that returns a product, and a concrete builder implements it. There are
additional hints, for example that the concrete builder must have state, that the build method
must be public but not static, and that the abstract builder must not be a subtype of product.
But the results are not as good as for the decorator pattern.

The RML program is lengthy and complex, and it outputs many triples of classes that are not
builder patterns. The reason for this being that the structure that the builder pattern imposes
on the Java classes is:

- Not unique enough. A concrete class implementing an abstract one is very common.
The restriction that a build method must be defined and that it must return a Product is
not strong enough.

- Not reliable enough. There are too many variations in which the builder pattern can
be implemented. This makes it very hard to find strong restrictions on the pattern
structure. Some builders only have one build method and many set-methods that
change the internal state and return nothing. Other builders also have get-methods that
return default settings. A particularly useful implementation is for the set-methods to
return this so that chained method calls like this are possible:
 builder.setX(12).setInfo(“Thirteen”).build();
But this is only true of some builders and not others. Often products do not provide
public constructors, but this too is not a reliable restriction.

- Easy to find with Crocopat. The structures of the builder pattern can be found in the
RSF output.

Possible Improvements
Although the builder pattern is not as easy to find as the decorator pattern, the results can be
improved upon. For example by:

- Ensuring that ConcreteBuilder is not a subtype of Product
- Ensuring that Product has at least some fields to store internal state
- Looking for specific types of builders, such as those whose setter methods return this.
- Not listing classes that “build” more than one type of product. They are very likely not

part of builder patterns.

 23

Immutable Classes
Objects of immutable classes cannot be modified after they are created.

Immutable classes have many advantages. Having only one state makes them invulnerable
against accidental modification, reducing the number of possible programming errors.
Because immutable objects do not change their state, they can be safely shared between
different threads. They are also good keys for hashed collections like java.util.HashMap.
Generally, immutable objects can be shared freely and make good building blocks for the
internals of other objects. For example the Flyweight Pattern (see [Patterns] page 195) relies
on sharing a big number of small objects. This is greatly simplified if the small objects are
guaranteed to never change their state.

An Immutable Class

The most prominent examples of immutable classes in Java are java.lang.String and the
wrapper classes for primitive types java.lang.Integer, java.lang.Boolean, etc. Other examples
include java.math.BigInteger and java.util.Currency.

For more information about immutable classes see [Effec] page 73.

Finding Immutable Classes with Crocopat
For a Java class to be immutable, the following conditions must be met:

1. The class must not allow subclassing. Otherwise a client could subclass it and make
the subclass mutable. As subclasses are generally accepted instead of their
superclasses, this could result in the immutability being broken.

2. The class must have at least one field to store some state. A class that doesn’t have any
state is not considered immutable.

3. The non-static fields of the class must be immutable. They must either be declared
“final” or they must be “private” and only be written to from constructors, static
initializers or instance initializers of the class.

4. The same must be true for all inherited non-static fields.
5. All non-static fields must be of a primitive type (int, boolean, etc.) or they must be of

an immutable type.

The fifth restriction is generally not necessary. Immutable classes may have fields of object or
array type as long as these fields are never changed. But it is not possible to check this from
the RSF output. In Java there are too many ways to modify object or array types that cannot
be found with the current RSF output.
Consider for example java.lang.String, which stores its state internally in a char[] array.
The String class could pass this array as a parameter to a method call. It could also assign it to

 24

a local variable and then access the array through that variable. Both actions could modify the
array and neither can be reliably detected with the current RSF output.

The RML program for finding immutable classes is rather complex compared to the program
for finding decorators, but it does a good job of finding the subset of immutable classes,
which have non-static fields that are only of primitive types or immutable classes. It does not
find immutable classes, which have non-static fields of object or array types.
The reasons that only a subset of immutable classes can be found are:

1. Unique. The structure of immutable classes is unique. A class is immutable if and
only if it has fields and these fields can never be modified after object creation.

2. Reliable. The structure of immutable classes must always be the same. There must not
be any modification of the fields, nor any public non-final fields, nor any subclasses.

3. Hard to find with Crocopat. Classes with fields of object or array type cannot be
verified to be immutable classes with the current RSF output. This is generally a hard
problem, because there are many ways in which a Java object can be modified.

Possible Improvements
More immutable objects could be found if additions would be made to the RSF output:

- Note lazy initialisation. Lazily initialised fields are only written to once, but not at the
time of object creation, instead they are written to once at the first time the field is
used. For example, java.lang.String stores its hashcode in a field that is initialised at
the first call of the hashCode() method.

- Track whether method parameters are modified.
- Track whether fields of array of object type used in a method are modified.

 25

Conclusion
Converting Java projects to RSF and searching the RSF for design patterns with Crocopat is a
very promising approach. Many design patterns can be found this way, though not all of them.
Some patterns - like decorators - work better than others - like builders. But for those patterns
that cannot reliably be found, at least a list of probable matches can be created.

If and how easily a design pattern can be found depends mainly on three factors.
A design pattern is easier to find if it is:

- Unique. Design patterns impose structures on the Java classes. If these structures
appear in many patterns and classes, the design pattern is harder to find. If these
structures are rarely used, the design pattern is easier to find.
Immutable classes have a completely unique structure. A class is immutable if and
only if its non-static fields can never be modified after creation.
Decorators are mostly unique. Most but not all classes that have a field of a type T and
are themselves a subtype of type T
Builders are not sufficiently unique. Many classes that extend an abstract class and
have a possible build() method that returns another type are not builders.

- Reliable. If the structures, which a design pattern imposes on the Java classes, are the
same in every implementation of the pattern, the design pattern is easier to find. If
these structures can be a bit different in each implementation, the design pattern is
harder to find.
Decorators and immutable classes are reliable. Every decorator must be a subtype of
its decorated type and have a field of its decorated type. No immutable class may have
a public, non-final, non-static field or allow inheritance.
Builders are not reliable. A builder may have only set-methods, or it may also have
some get-methods to inquire about default settings. It may have one build method or
many. It might return this from every set-method or not.

- Easy to find with Crocopat. Some structures can be found in the current RSF output,
but others cannot.
Decorator structures like inheritance and the type of fields are present in the current
RSF output and can be found by Crocopat.
Builder structures like inheritance and object creation are mostly present in the current
RSF output. But there’s no easy way to check if a specific method in a class overrides
another method in its superclass.
Structures of immutable classes are only partially present in the current RSF output.
While it is possible to check if a field of primitive type is immutable, it is not possible
to check if a field of object or array type is immutable.

A 90% solution
Converting Java projects to RSF and searching the RSF output for design patterns with
Crocopat is a 90% solution, meaning that this solution will never find 100% of all design
patterns in all projects. Nevertheless the solution is good enough for practical use and with
steady incremental improvements it might come close to finding 90% of the design patterns in
90% of all projects.

 26

Crocopat cannot read Java input directly. But more importantly, because the RSF format is
relational and code in Java methods is imperative, the RSF format is not well suited to
represent code inside Java methods. This leaves a gap between what can be expressed in Java
and what can be processed in Crocopat.
Nevertheless, this is only a technical problem. And of the three factors that determine how
easily a design pattern can be found, “easy to find with Crocopat” is the simplest one to
improve. Most in-method code that is relevant to design patterns, like lazy initialisation and
passing of fields to other methods as parameters, could eventually be part of the RSF output.

The bigger problem lies with the fact that some design patterns are not unique and reliable
enough, because this is the very nature of design patterns.
Design patterns themselves are unique. They are descriptions of solutions for common design
problems. These problem descriptions and solutions are different for each pattern and one
pattern is clearly distinct from every other, for example the builder pattern is clearly
distinguishable from the abstract factory pattern.
But the structures that design patterns impose on the code are not as unique. The
implementation of a design pattern depends not only on the structure of the code, but also on
how and in what context the code is used. For example the interface java.awt.Shape and its
implementations Line, CubicCurve and Ellipse have a method getBounds() that returns a
Rectangle which encloses the shape. These classes could certainly be used to create a number
of different rectangles. But instead they are mostly used for representing the various shapes,
not for creating rectangles. While the structure of these classes is similar to the builder
pattern, they are used in a different context, which is very hard to measure.

The structure that design patterns impose on the code is often not reliable. Design patterns
don’t have formal mathematical definitions, they only have descriptions. Of course it would
be easy to redefine the builder pattern more restrictively so that every implementation may
only have one build method, a number of set-methods that must return this and no get-
methods. But this redefinition would not be a useful in practice, as many builder
implementations exist that do not conform to it.
Different implementations of design patterns must fulfil different design requirements. So
there will always be variations in the implementation.

The fact that many design patterns are not sufficiently unique and reliable is a theoretical
problem with its root in the very nature of design patterns. So although it is possible to
improve the search process to find more design patterns, there can never be a way to find
them all.

The RSF output format
The chosen RSF output format generally works well. There are still obvious parts missing,
like method parameters and lazy initialisation. But it is already very useful for finding design
patterns.
Two decisions in particular paid off: Completeness and readable names. Even minor
information like field modifiers (pubic, static, etc.) were useful for some patterns. And long
readable names in the form hworld.HelloWorld.main(java.lang.String[])are a very
useful in testing. For every relation that is created, it is immediately clear which class, field or
method in which source file is meant. This makes it easy for example to verify if a class in the
output really implements the searched design pattern.

 27

Crocopat
Crocopat is very well suited for searching for design patterns. Its simple RSF input and output
format and expressive RML programming language lived up to its promises. And it handled
big input files (165 MB) well.

Future Work
Directions for future work on this approach in the order of importance:

1. Finding more design patterns. Three patterns can give insight into the viability of this
approach. But for further work, RML programs for a greater number of patterns are
needed.

2. Making use of the results. The patterns found should be used in programming or
design tools. This would give practical feedback about how good the results really are
and where improvements are needed.

3. Improving the RSF output. While the current RSF output gives good information, it is
clear that it could contain more information.

 28

Appendix A: Output Format of java2rsf
For a Java project or class processed by java2rsf the following RSF output is created:

For Basic Building Blocks
 PACKAGE packageName
 CLASS typeName
 MEMBER_CLASS typeName
 LOCAL_CLASS topLevelTypeName$Index$SimpleName
 ANONYMOUS_CLASS topLevelTypeName$Index
 ENUM typeName
 INTERFACE typeName
 ANNOTATION_TYPE typeName
 METHOD typeName#methodName(typeName1,typeName2, …)
 CONSTRUCTOR typeName#<init>(typeName1,typeName2, …)
 ANNOTATION_METHOD typeName#methodName()
 FIELD typeName#fieldName
 ENUM_CONSTANT typeName#fieldName
 STATIC_INITIALIZER typeName#<staticInit>
 INSTANCE_INITIALIZER typeName#<instanceInit>

CLASS marks a top-level class and MEMBER_CLASS a member class. For enums, interfaces and
annotation types no such distinction is made.

For local and anonymous classes, Index is a number greater than zero. Even if local or
anonymous classes are declared inside a nested class, only the top level enclosing class is
mentioned in their name.

If no constructor is declared, a standard empty argument constructor is provided. This
standard constructor is visible in the RSF output.

Initializers are present not only for initializers but also for classes, which have fields with
field initilizers.

Names
A packageName is the fully qualified name of a package. If no package is declared,
<defaultPackage> is used.

A typeName has the form

packageName.EnclosingType1$EnclosingType2$SimpleTypeName
where package name is the name of the package. If no package is declared, packageName. is
omitted. There may be zero or more enclosing types.

For primitive types, the name is the identifier of the primitive type, e.g. int or boolean. For
array types, the name has the format
 arrayElementType[]
for example int[] or java.lang.String[]

 29

Attributes
 IS typeExecutalbeOrFieldName modifier
 IS_OF_TYPE methodOrFieldName typeName
 HAS_ANNOTATION typeExecutalbeOrFieldName typeName

Where modifier is a java modifier like private, public, final, etc.

For methods, IS_OF_TYPE is the return type of the method.

Relations
 CONTAINS packageName topLevelTypeName
 CONTAINS enclosingTypeName enclosedTypeName
 HAS typeName executableOrFieldName
 EXTENDS typeName typeName
 IMPLEMENTS typeName typeName
 THROWS executableName typeName

Others
 READS executableName fieldName
 WRITES executableName fieldName
 CALLS executableName executableName
 USES typeOrExecutableName typeName

 30

Appendix B: User Guide for java2rsf
Usage: java -jar rsfparser.jar <inputFile> [-r] [-c <classpath>]
[-l <javaVersion>] [-e <encoding>] [-v]
 <inputFile>
 Set the .java file or directory to create Rsf output from.
 For a directory, all .java files in the directory will be added, but
 files in its subdirectories will not be added.

 [-r]
 If the input file is a directory, adds all .java files in its
 sudirectories.

 [-c <classpath>]
 Name a directory or .jar file that contains Java classes that are
 referenced in the input files.
 Can be used multiple times

 [-l <javaVersion>]
 Set the java language version of the .java files, can be 1.1, 1.2, 1.3,
 1.4, 1.5 or 1.6, defaults to 1.6

 [-e <encoding>]
 Set the encoding of the .java files, defaults to the system default
 encoding

 [-v]
 Give feedback about which file is parsed at the moment.

 31

Appendix C: Creating the example RSF output

Java API
Sources as included in JDK 1.6, update 10, for Windows.

java -Xmx512m -jar java2rsf.jar “c:\src\java api” –r -v -c "C:\Program
Files\Java\jre6\lib\jce.jar" -c "C:\Program Files\Java\jre6\lib\jsse.jar" >
java-api.rsf
Where C:\Program Files\Java is the directory into which Java is installed.

The Eclipse JDT parser is a little more restrictive than Sun’s javac (this is probably a bug in
javac). So two manual changes must be made to the source files where the Eclipse JDT parser
throws an error but javac only throws a warning:

 com\sun\jmx\mbeanserver\OpenConverter.java, line 1169
add wildcard parameter Constructor<?> in line 1167, or cast to ConstructorProperties
in line 1169

 java\beans\MetaData.java, line 1389
add wildcard parameter Constructor<?> in line 1388, orcast to ConstructorProperties
in line 1389

JDT Core
Sources and libraries as included in Eclipse 3.4.1 for Windows.

java -Xmx512m -jar java2rsf.jar "c:\src\jdt core" -r -v -c
org.eclipse.core.contenttype_3.3.0.v20080604-1400.jar -c
org.eclipse.core.filesystem_1.2.0.v20080604-1400.jar -c
org.eclipse.core.jobs_3.4.0.v20080512.jar -c
org.eclipse.core.resources_3.4.1.R34x_v20080902.jar -c
org.eclipse.core.runtime_3.4.0.v20080512.jar -c
org.eclipse.equinox.app_1.1.0.v20080421-2006.jar -c
org.eclipse.equinox.common_3.4.0.v20080421-2006.jar -c
org.eclipse.equinox.preferences_3.2.201.R34x_v20080709.jar -c
org.eclipse.equinox.registry_3.4.0.v20080516-0950.jar -c
org.eclipse.jface.text_3.4.1.r341_v20080827-1100.jar -c
org.eclipse.jface_3.4.1.M20080827-2000.jar -c
org.eclipse.osgi_3.4.2.R34x_v20080826-1230.jar -c
org.eclipse.text_3.4.0.v20080605-1800.jar > jdt-core.rsf

Java Mail 1.4.1
java -jar java2rsf.jar "c:\src\java mail" -r –v -c "C:\Program
Files\Java\jre6\lib\jsse.jar" > java-mail.rsf

jEdit 4.2
java -Xmx512m -jar java2rsf.jar c:\src\jedit -r –v -c c:\src\jedit\ant.jar
-c "C:\Program Files\Java\jdk1.6.0_10\lib\tools.jar" -c
c:\src\jedit\xercesImpl.jar > jedit.rsf

The ant.jar and xercesImpl.jar libraries needed are from Ant 1.7.

The jedit\jars directory needs to be deleted to create the RSF output.

 32

References
[Bat] Eclipse JDT Core Batch Compiler

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_api_compile.htm
[Bey] D. Beyer, C. Lewerentz

Crocopat: Efficient Pattern Analysis in Object-Oriented Programs
International Workshop on Program Comprehension (IWPC), 2003

[Bowm] I. Bowman, R. Hold, N. Brewster
Linux as a Case Study: Its Extracted Software Architecture
Proceedings of the International Conference on Software Engineering, 1999

[Croc] Crocopat Homepage
http://www.cs.sfu.ca/~dbeyer/CrocoPat/

[CrocM] D. Beyer, A. Noack
Crocopat Introduction and Reference Manual
2004

[Diet] J. Dietrich, C. Elgar
A formal description of design patterns using OWL
Proceedings of the Australian Software Engineering Conference (ASWEC), 2005
Web of Patterns
http://www-ist.massey.ac.nz/wop/

[Effec] J. Bloch
Effective Java : Second Edition
Addison-Wesley, 2008

[Eixe] W. Eixelsberger, L. Warholm, R. Klösch, H. Gall, B. Bellay
A Framework for Software Architecture Recovery
1996

[Fulo] L. Fülöp, T.Gyovai, R. Ferenc
Evaluating C++ Design Pattern Miner Tools
Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and
Manipulation, 2006,

[Guo] G. Guo, J. Atlee, R. Kazman.
A software architecture reconstruction method
Proceedings of the first Working IFIP Conference on Software Architecture, 1999

[Gwt] GWT’s use of JDT Internal
http://www.google.com/codesearch?hl=en&q=org.eclipse.jdt.internal&exact_package=
http%3A%2F%2Fgoogle-web-toolkit.googlecode.com%2Fsvn

[Hauf] Haufler
Erkennung von Entwurfsmustern
University of Stuttgart, 2006

[Head] Eric Freeman, Elisabeth Freeman
Head First Design Patterns
O’Reilly, 2004

[JdtC] Eclipse JDT main page
http://www.eclipse.org/jdt/
JDT Core Newsgroup
http://www.eclipse.org/newsportal/thread.php?group=eclipse.tools.jdt
Eclipse help about JDT Core
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_int_core.htm

[Jedit] JEdit Homepage
http://www.jedit.org/

 33

[Jls] J. Gosling, B. Joy, G. Steele, G. Bracha
The Java Language Specification, Third Edition
Addison-Wesley, 2005
http://java.sun.com/docs/books/jls/

[Jmail] Java Mail Homepage
http://java.sun.com/products/javamail/

[Jml] Java Modeling Language (JML) homepage
http://www.eecs.ucf.edu/~leavens/JML/
JML3Core Repository
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/JML3/trunk/JML3Core/

[Patterns] E. Gamma, R. Helm, R. Johnson, J. Vlissides
Design Patterns : Elements of Reusable Object-Oriented Software
Addison-Wesley, 1995

[Sart] K. Sartipi, K. Kontogiannis
Pattern-based Software Architecture Recovery
Proceedings of the Second ASERC Workshop on Software Architecture, 2003

[Spol] J. Spolsky
Things You Should Never Do, Part I
http://www.joelonsoftware.com/articles/fog0000000069.html
2000

[Spoon] Homepage of the Spoon project
http://spoon.gforge.inria.fr/

[Stal] D. Dietsch
STALIN: A plugin-based modular framework for program analysis
University of Freiburg, 2008

[SunC] T. Ball
Hacking javac
http://weblogs.java.net/blog/tball/archive/2006/09/hacking_javac.html
2006
Compiler Tree API
http://java.sun.com/javase/6/docs/jdk/api/javac/tree/index.html
JSR 199: The Java Compiler API
http://jcp.org/en/jsr/detail?id=199
2006

[Svet] D. Svetinovic, M. Godfrey
A Lightweight Architecture Recovery Process
2003

